Chronic corticosterone administration dose-dependently modulates Abeta(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis.
نویسندگان
چکیده
The impact of glucocorticoids on beta-amyloid(1-42) (Abeta(1-42)) and NMDA-induced neurodegeneration was investigated in vivo. Abeta(1-42) or NMDA was injected into the cholinergic magnocellular nucleus basalis in adrenalectomized (ADX) rats, ADX rats supplemented with 25%, 100%, 2x100% corticosterone pellets, or sham-ADX controls. Abeta(1-42)- or NMDA-induced damage of cholinergic nucleus basalis neurones was assessed by quantitative acetylcholinesterase histochemistry. Plasma concentrations of corticosterone and cholinergic fibre loss after Abeta(1-42) or NMDA injection showed a clear U-shaped dose-response relationship. ADX and subsequent loss of serum corticosterone potentiated both the Abeta(1-42) and NMDA-induced neurodegeneration. ADX+25% corticosterone resulted in a 10-90 nM plasma corticosterone concentration, which significantly attenuated the Abeta(1-42) and NMDA neurotoxicity. ADX+100% corticosterone (corticosterone concentrations of 110-270 nM) potently decreased both Abeta(1-42)- and NMDA-induced neurotoxic brain damage. In contrast, high corticosterone concentrations of 310-650 nM potentiated Abeta(1-42)- and NMDA-triggered neurodegeneration. In conclusion, chronic low or high corticosterone concentrations increase the vulnerability of cholinergic cells to neurotoxic insult, while slightly elevated corticosterone levels protect against neurotoxic injury. Enhanced neurotoxicity of NMDA in the presence of high concentrations of specific glucocorticoid receptor agonists suggests that the corticosterone effects are mediated by glucocorticoid receptors.
منابع مشابه
Effect of corticosterone and adrenalectomy on NMDA-induced cholinergic cell death in rat magnocellular nucleus basalis.
The present study demonstrates the effects of adrenalectomy and subcutaneously administered corticosterone on N-methyl-D-aspartate-induced neurodegeneration in the cholinergic magnocellular basal nucleus of the rat. NMDA was unilaterally injected into the nucleus basalis at different plasma corticosterone concentrations in adrenalectomized rats, in adrenalectomized animals with subcutaneously i...
متن کاملCalpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats.
Amyloid-beta (Abeta) is toxic to neurons and such toxicity is - at least in part - mediated via the NMDA receptor. Calpain, a calcium dependent cystein protease, is part of the NMDA receptor-induced neurodegeneration pathway, and we previously reported that inhibition of calpain prevents excitotoxic lesions of the cholinergic nucleus basalis magnocellularis of Meynert. The present study reveals...
متن کاملBeta-amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity in rat cerebral cortex: reversal by NMDA receptor blockade.
Ample experimental evidence indicates that acute beta-amyloid infusion into the nucleus basalis of rats elicits abrupt degeneration of the magnocellular cholinergic neurons projecting to the cerebral cortex. In fact, involvement of a permanent Ca2+ overload, partially via N-methyl-D-aspartate (NMDA) receptors, was proposed as a pivotal mechanism in beta-amyloid-induced neurodegeneration. A defi...
متن کاملEffects of Memantine, an NMDA Antagonist, on Metabolic Syndromes in Female NMRI Mice
Introduction: The brain glutamate neurotransmitter system and its NMDA receptors in the nucleus accumbens play an important role in the incidence of the phenomena of sensitivity and addiction. The present study examined the inhibitory effect of glutamate NMDA receptors in the nucleus accumbens in response to chronic stress. Methods: After the unilateral and bilateral cannula placement in the ...
متن کاملGlutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala
Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroendocrinology
دوره 12 6 شماره
صفحات -
تاریخ انتشار 2000